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The problem of allocating instructional effort to two interrelated blocks of learning 

material is studied. In many learning environments, the amount of material that has 
been mastered in one area of study affects the learning rate in another distinct but 

related area-for example, the curriculum subjects of mathematics and engineering. 
A model is developed that describes this phenomenon, and the Pontryagin Maximum 
Principle of control theory is applied to determine optimal instructional policies 

based on the model. The nature of this optimal solution is to allocate instructional 

effort so that the learner follows a maximal average learning rate “turnpike” path until 
near the end of the study period and then concentrates on only one strand. This 
strategy, when applied to a more realistic stochastic model, defines a closed-loop 

feedback controller that determines daily instructional allocation based on the best 
current estimate of how much the student has learned. This estimate is calculated by 

a multistage linear filter based on the Kalman filtering technique. 

The framework of control theory provides a useful structure for studying a number 
of problems in the theory of instruction. This framework is centered around a dynamic 
description of the essential characteristics of the problem, called state variables. This 
dynamic model, whether deterministic or probabilistic, describes the possible future 
results over the time period of interest for each decision or control policy. The decision 
variables usually are constrained to belong to some admissible or feasible set. Once the 
dynamic behavior of the system is known, the problem is to choose a control policy 
that, in some sense, is ‘best’. In the framework of control theory an objective functional 
is formulated to determine whether one control policy is better than another one. This 
functional assigns a scalar value measuring the “goodness’ of the control policy which 
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explicitly evaluates the trade-off between benefits and costs. In problems where this 
trade-off cannot be formulated, the objective can be simplified to maximizing benefits 
for a certain cost level or to minimizing cost for a certain minimum level of benefits. 

In the theory of instruction the problem is to determine an instructional policy for a 
certain planning period that maximizes student achievement while maintaining or 
minimizing instructional costs. This problem fits naturally into the control theory 
framework provided the dynamic behavior of the interaction between student and 
teacher can be described. In certain highly simplified learning environments investi- 
gated by experimental psychologists the dynamic behavior of the student is described 
reasonably well by existing learning models. In other learning situations, especially 
with teacher-learner interaction, new models must be developed. Application of control 
theory to these problems shows promise of useful results. 

A number of researchers have been interested in the application of optimization 
techniques to models of learning and instruction. Smallwood (1962) structured the 
interaction of learner and machine in a programmed instruction environment. Karush 
and Dear (I 966) and Groen and Atkinson (I 966) h ave applied optimization methods to 
mathematical learning models. Atkinson and Paulson (1972) outline the basic steps of 
rational decision making as applied to the theory of instruction and develop several 
applications. In the present paper, a model of a different kind of learning environment 
is considered and analyzed in order to derive optimal instructional policies. 

The Stanford Reading Program (Atkinson and Fletcher, 1972) is a computer- 
assisted instructional program for teaching reading to students in grades l-3. The 
program is organized around two basic curriculum strands, one devoted to instruction 
in sight-word identification and the other to instruction in phonics. Each strand is an 
ordered sequence of exercises that may be regarded, for our purposes, as unending. 
There are other components in the reading program, but each day the student spends 
some time on both the phonics and the sightword strands. It has been observed that 
the instantaneous learning rate on one strand depends on how far along the student is 
on the other strand. This phenomenon, of course, is not unique to the Stanford 
Reading Program or even to the general area of learning to read. Clearly, in most areas 
of learning that involve the simultaneous study of more than one curriculum, per- 
formance on one will be interrelated with the achievement level on the other. It is this 
interaction that is modeled and analyzed for optimal instructional policies in the present 
paper. 

The basic problem is as follows: It is assumed that the learning rate for each of two 
strands depends on the difference between the achievement levels on the two strands. 
The dependence is such that if the student has progressed farther in the first strand 
than in the second, then the learning rate decreases for the first and increases for the 
second. This functional relationship is assumed to be known. The objective is to 
maximize the level of achievement for some weighted average of the two strands over 
a given number of days of instruction. The total daily period of instruction for the two 
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strands is fixed, but the relative amount of time devoted to each strand each day is a 
control variable. 

The next section of the paper describes the basic features of the problem and the 
various formulations that will be analyzed in later sections. The first of two principal 
results is developed in the third section. Here the Maximum Principle of optimal 
control theory is applied which yields optimal instructional policies for one of the 
problem formulations. This optimal solution is characterized by a “turnpike path” 
in the state space that is part of any optimal trajectory. The turnpike path is also shown 
to be a maximal average learning rate path. The second result is developed in the fourth 
section where a solution is given for the case that includes a probabilistic description 
of the system. This solution makes use of the earlier result which applies to the deter- 
ministic case. The last section includes some comments and conclusions. 

PROBLEM FORMULATION 

Learning Rate Characteristics 

The interdependence of the learning phenomenon of the two curriculum strands 
can be characterized as follows. Let the achievement levels of a student on the two 
strands be represented by x1 and x2 . The interdependence between the strands is such 
that the instantaneous learning rate on a strand is a function of the difference, x1 - x2 , 
in achievement levels. Typical learning rate characteristics are shown in Fig. 1. It is 
clear that the characteristics shown are stable in the sense that the larger the difference 

Xl - x2 is (i.e., the farther x1 moves ahead of x2) the smaller the learning rate on 
strand one and the larger the learning rate on strand two. Thus, the achievement levels 
tend to change in order to oppose the change in .x1 - x2 . 

I 
lnstantoneous 
Leorning Rate 

0 y= x,-x2 

Flc. 1. Learning rate characteristics. 
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The long term, or steady state learning rates can be determined as follows. If the 
fraction of time allocated each day to each strand were constant over a long period, 
then the learning rates would approach the steady state values given by 

%tl - it,t, = 0, (1) 

where ti is the time allocated to strand i per day and 3ii = dx,/dt is the learning rate on 
strand i. Equation 1 requires that the progress on each strand (learning rate multiplied 
by time) is the same each day, and hence the difference xi - x2 does not change. 
Expressed differently, (1) becomes 

3i”,lJi”, = t,lt, > 

which shows that the ratio of the steady state learning rates is the reciprocal of the 
ratio of the times spent on each strand. 

Discrete Time Model 

The problem of interest is the determination of the optimal allocation of teaching 
effort (computer time in the Reading Program application) over an extended period of 
time. In order to do this, a dynamic model is required that describes how the learner 
progresses, given certain teaching inputs. If a time unit of one day (or one session at the 
computer terminal) is used, then the basic model is as follows: The achievement level 
at the end of the day is the achievement level at the beginning of the day plus the 
amount learned which is the product of learning rate and time. That is, 

where 

- 

xi(k) is the achievement level at the end of day k on strand i 

u(k) is the amount of time allocated to strand one (normalized so 
that 0 < u(k) < 1) 

- x,(k)) is the average learning rate for day k on strand i which 
depends on the time allocation u(K) and the difference, 
x,(k) - x2(k), in achievement levels. 

The functions #i are determined by the learning rate characteristic functions, denoted 
fi , as illustrated in Fig. 1. As an approximation, the functions +i are the same as the 
fi if rate variation during the session is ignored. If so, & does not depend on u(k), 
and we have 
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Although model (2) is quite general, a more realistic description of the learning 
process would include stochastic parameters. Assuming that the random behavior of 
this process may be represented by additive gaussian noise, model (2) becomes 

where the n,(K) represent noise. Our objective is to determine the optimal teaching 
effort allocation, u(k), for all k. This allocation will depend on how much the student 
has learned up to the current moment. Thus knowledge of the state vector x(k) = 
(x,(K), ~,(k))r during the learning process is essential. In most instructional situations, 
tests are used as a measure of the student’s achievement. However, the test results are 
imperfect so that another noise component will enter the model. If we denote the 
measurements (test results) by x(k), then the measurement model is 

where z(K) = (z,(K), ~a(k))~ represents measurements of the achievement levels on the 
two strands and w(K) = (w,(K), ~,(k))~ re p resents gaussian measurement noise. 

The instructional objective is to maximize the final achievement levels of the student 
in the two strands. Let the relative importance of the two strands be represented by 
the nonnegative constants cr and ca . Then the objective is to maximize 

where zci( T) represents the final level of achievement on strand i after the fixed number 
of days T. In the case with random components included, the objective function is the 
expected value of (5). 

The problem is to determine the teaching input variable or control variable u(k) for 
k = 0, 1, 2 ,..., T - 1 such that 

0 < u(k) < 1 (6) 

that maximizes (5) subject to the system dynamics (3) with measurements (4). 

Continuous Time Model 

The problem as posed in the previous section would be impossible to solve analy- 
tically although numerical methods using simulation could be used for a particular case. 
In order to understand this process, we chose to simplify the model so that an analytic 
solution would be possible while keeping the essential characteristics of the problem. 
Later, these simplifications will be relaxed. 
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The first simplification is to look only at the deterministic problem, that is, the 
randomness introduced by the state and measurement noises will be ignored. The 
second simplification is to consider a continuous time model rather than the discrete 
time model formulated in the previous section. Although this will simplify the analysis, 
there is no loss in realism. The continuous time model will allow us to drop the depen- 
dence of the characteristic function 4 on the control variable u and still have the model 
account for learning rate changes during the day. 

The transition to the continuous model from the discrete model (2) can be thought 
of as dividing the study period into finer and finer equal partitions. In the limit, the 
continuous time control variable, u(t), represents the relative amount of time spent on 
strand one. The continuous time model now expressed in differential equation form is 

with initial values x,(O), x,(O) g iven. The learning rate characteristic functions fr 
and fi are given by Fig. 1. The problem now is to maximize 

where T is given and c, and ca are given nonnegative weights. This maximization is 
with respect to u subject to the constraint 

0 ,< u(t) < 1 (9) 

for all t such that 0 < t < T. 

1 
lnstontoneous 
Learning Rote 

0 y = x,-x2 

FIG. 2. Linearized learning rate characteristics. 
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The third simplification is to consider only straight-line learning rate characteristics 
as shown in Fig. 2. Although this assumption may seem unrealistic we will see that 
the results from the analysis of the model may be reasonably transferred back to 
the original nonlinear model. Thus the form of the fi functions is 

(‘0) 

where a, , a ,a , b, , b, are positive constants and x1 and .ra are restricted to values such 
that these functions are positive. 

With the continuous model expressed in this form this model is equivalent to the 
discrete model (3) if the following interpretations are given to the & functions. Suppose 
that the control variable u(t) is constant over day k at the value u(k), i.e., 

u(t) = u(k), k<t<k+l. 

Then (7) and (10) show that 

k‘(t) = V+(t) + G(k), k<t<k+1, 

where the system matrix F(k) is given by 

w(k) 
--[I - u(k)] a2 1 ’ 

and 

Integrating (11) from t = k to t = k + 1 gives 

J 

kfl 
x(k + 1) = eFck)x(k) + eF(k)(k+l-t)G(k) dt. 

k 

If we define the discrete model transition 2 x 2 matrix +(k) and vector B(k) as 

+(k) = eFck), 

B(k) = j:, eF(k)(k+l-t) & G(k), 

then (14) becomes the apparent linear form 

4k + 1) = 4(kW) + B(k), 

where u(k) is included on 4(k). 

(11) 

(12) 

(‘3) 

(‘4) 

(15) 

(1’5) 

(17) 
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ANALYSIS OF CONTINUOUS MODEL 

Solution of SimpliJied Model Using Maximum Principle 

In this section the Pontryagin Maximum Principle (Pontryagin et al., 1962; 
Luenberger, 1969) will be used to obtain an analytic solution to the problem as stated 
in Eqs. 7-10. It will be shown that the optimal control input is initially to teach one 
strand only until its achievement level reaches a certain value. Then both strands 
should be taught at a rate to maintain the difference between the strands constant. 
Near the end of the study period T again only one strand should be taught depending 
on the ratio of the objective function weighting constants c1 and c% . The form of this 
solution is called a “turnpike”2. 

Necessary conditions for u to be the optimal solution for the maximization problem 
Eqs. 7-10 are given by the Maximum Principle. To begin this analysis, we examine the 
hamiltonian which is given by 

= hufdr) + w - U)f2(Y) 

= h,u(& - a,y) + A,(1 - uW2 + Q2Y) 

= u[h,(b, - a,y) - h(h + w>l + JW2 + wh 

(18) 

where y is defined as the difference x1 - x2 and where A1 and A, are defined by the 
adjoint differential equations 

with terminal condition A(T) = c, the objective function coefficient vector. Necessary 
conditions for u to be optimal are that u(t) maximize the hamiltonian H, for 0 < t < T, 
subject to the constraint (9). Since His linear in u(t), the maximum will occur with u(t) 
on the boundary of the constraint set, that is, either u(t) = 0 or u(t) = 1, unless the 
quantity multiplying u(t), i.e., 

is zero. 
U4 - w) - h2@2 + a2.d (20) 

2 The term “turnpike” has been used by Samuelson (1960) and other economists to describe 

a similar result in economic growth theory. The term comes from an analogy to a highway 
system where minimum time paths between towns often are not minimum distance paths but 
instead have the motorist detour to a turnpike for most of the journey and then leave the turnpike 

for his final destination. The turnpike path here differs from the maximal growth rate turnpike 
paths in economics in that the difference between two variables is constant in this result whereas 
ratios are constant in the economic growth results. 
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From (19) we have that 

x1 + A, = 0 

and since h,(T) = cr , h,(T) = cs , we have 

qq = Cl + cz - h(t); 

so expression (20), which will be denoted e, becomes 

e = Wl - w) + W2 + u,y) - (cl + c2)@2 + a2Y). 

And so 

j = 3;; - 2, 

= Ku2 - 4 * - @2> y + 4h + 4) - b2 9 

(21) 

(24 

(23) 

wherey(0) = ~~(0) - ~~(0). 
Now suppose that the optimal solution has an interval where the control variable 

u(t) is not on the boundary (i.e., not zero or one).3 In this interval e must be identically 
zero and so must the derivative of e. Looking at the derivative of e, we see that 

Substituting (19) for A, and (23) for j and cancelling terms, yields 

e’ = (a,& + 44) A1 + %%(Cl + 4Y - U2Wl + cz)* 

Imposing the condition t = 0, we see that 

4 = k, - kv, 

where 

(24) 

(25) 

But (25) and e = 0 imply that y is constant and given by the quadratic equation 

(a&, - 4,)~~ + (--b,k, - 42 + 4, - hh, - U&I + 4)~ 

+ b,k, + bk, - (~1 + 4 b2 = 0, 

or, if k, # 0, 

(27) 

(a, - 4 Y’ - PI + 4 + (a, - 4Wkl) + 4~1 + Wd y 
+ @,P,P, + b,) - hkl + cz)lk, = 0. 

3 Problems with this characteristic are called singular. See Athans and Falb (1966), especially 
Section 6-21. 
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From (26) we have 

and so (27) becomes 

(a1 - 4 Y2 - 2@, + b,)y + (U2b12 - %V)/~,~, = 0. (28) 

The solutions of (28) are 

y = (da, f vzb,)/((d/a,F d4 dalaz), 4 f a2 3 (29) 

where the 3 and F are taken respectively, and 

Y = Vl - b2PQ for a, = u2 = a. 

By checking the functions fi and f2 , we see that the lower signs in (29) must be chosen 
in order to keep fi and f2 positive (which is the only meaningful interpretation for this 
problem). Thus, 

y” = (2/Q, - da,b,)/(d/a, + dig z/us (30) 
12, 

and from (23) with j = 0 (which must be the case for y to be constant) we calculate 
that 

u* =fi(Y*)/[fi(Y*) +fi(Y*)l 

(31) 
= dada,+ d/a,), 

which is also valid for a, = u2 . The asterisk (*) is used to identify values of variables 
along a “turnpike” solution. 

This solution is shown in Fig. 3 which has been drawn for the particular values 
a, = 0.1, u2 = 0.05, b, = 2, b, = 1 so that 

u* = (I + j&)-l, y* = 20(3 - 2 v’?). 

The figure shows that y* is less than y’ the value such that fi(y’) = f2(y’). If the 
solution were at y’ then the control would be u’ = l/2 in order to keep y at this value. 
Since the optimal u* is less than l/2, more time is spent on strand two and, conse- 
quently, the optimal y* is less than y’. They* solution is better than y’ since a, > u2 
and hence the increase in the learning rate on strand one more than compensates for the 
decrease on strand two. It is shown later that this solution actually maximizes 3i; + 3i2 
so that this is a maximal average learning rate path. 
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FIG. 3. Particular learning rate characteristics. 

Returning to the basic problem, we must determine where the control variable is 

zero, one or given by the above solution. To simplify the notation of this development, 
the dependence of variables u and e on t will be omitted. The optimal value of u is 
determined by the sign of the quantity e defined by (22). To maximize H as given in 
(18), we see that 

e>O=>u=l, 

e<Oau=O. 

The solution to this problem will be shown to be of the form shown in Fig. 4. 
What is shown in this figure is the xrxa plane. At any point in time, the position 
of the student in terms of x1 and xa can be shown in this plane. His progress 

is measured by movement to the right and up. From most initial points in the 
x1x2 plane, the solution progresses as quickly as possible (U = 0 or u = 1) to the 
turnpike and stays on the turnpike for a period of time. Then near the end of time T, 
the solution leaves the turnpike with u = 0 or u = 1 depending on the slope of the 
objective function. The objective function can be represented in the xlxz plane by 
a straight line, i.e., a plot of crxr + czxz equal to a constant. The slope of this line is 
determined by the relative weights cr , cg g iven to the two strands in the objective 
function. 

The solution may not involve the turnpike path at all, especially for small values of 
final time T. 
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x 

~possible initial point c 

FIG. 4. Turnpike in xlxl plane. Optimal trajectories shown for two possible initial points 

and three possible ratios of objective function weighting coefficients. 

To complete the turnpike solution let us first consider the case of being on the turn- 
pike and determine how to optimally proceed to the final time. 

While the solution is on the turnpike, substitution of the value for y* from (30) 
into (25) for the adjoint variable A, , we see that 

A,* = (Cl + 4/(4% + 44 %(~I - w*) 

= (Cl + cs) d,i<dK + va. 

Or, using (31) for u*, we have 

A,* = (q + c2) u* (32) 

and from (21) 

A,” = (Cl + c,)(l - u*). (33) 

Now consider the possibility of leaving the turnpike, i.e., the possibility that u 
switches from u = u* to u = 0 or u = 1. First consider the case u = 1. From (19) 

A, = UluA, - u2( 1 - 24) A, , (34) 
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so that if u takes the value one, we have 

A, = a,uh, . (35) 

Since A, > 0 on the turnpike (see (32)), (35) im pl ies that AI increases exponentially as 

longasu = 1. 
From (23), 

j = - [u,u + a,(1 - u>ly + U(b, + k!) - 6, ; (36) 

soifu = 1, then 

L = bl - UlY =h(r)* (37) 

Now f,(y*) > 0 and fi(y) is positive in all cases of interest in this problem so that 
(37) implies that y  increases as long as u = 1. 

Finally, from (24), we see that (35) and (37) imply that e’ goes positive (from the 
value zero on the turnpike) as long as u = 1. If  6 > 0, then e > 0, since e = 0 on the 

turnpike. Thus e > 0 and hence u = 1 is a possible optimal control. Note that if 
u = 1 is optimal on leaving the turnpike then u must stay at the value 1 until the end, 
t = T, since (35) and (37) d o not change sign and so e can only increase in value (i.e., 
more positive). 

Similarly for the case of u = 0 upon leaving the turnpike, we have from (34) 

x1 = --a,/& ) 

or, equivalently, by using (21), 

Al = %Jl - e&l + 4 h,(T) = cl , (38) 

which is negative (see (32)). Thus A, decreases as long as u = 0. From (36), with 

u = 0, we have 

j = --a,y - b, = -h!(Y), (39) 

which implies that y  decreases as long as u = 0. Thus (24) shows that e goes negative 

and, indeed, u = 0 is a possible optimal control. Note again that if u = 0 as the 
solution leaves the turnpike, that e cannot return to zero so u must stay at zero until 
the end. 

The above arguments have proven the important conclusion that the optimal 
somtion is such that if the trajectory in the I~,x, plane ever follows the turnpike and 
subsequently leaves the turnpike, then the optimal trajectory never returns to the 
turnpike. 
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To determine the optimal value of u on leaving the turnpike (whether u = 0 or 
u = 1) we have the conditions from (19) that 

w”) = Cl ; h,(T) = cz . (40) 

Figure 5 shows the four possible situations with four typical values of the constants 
cr and ca . The values of A, and A, while the solution is on the turnpike are given by 
(32) and (33). Since the final values are given by (40) then (34) and (21) are sufficient 
to determine the optimal time when the control variable switches from the turnpike 
value (u*) to either zero or one. Whether the final value of control is zero or one 
depends on the relative values of cr and A,* as shown in Fig. 5. The parameter values 
for Fig. 5 are the same as for Figs. 3 and 4. 

Figure 5(a) is the case where 

-1 

x2(t) 
/y-iJ 

x,(t) 
I 1 
I , 
I , 
I , 

u = I/* 
I 

ll=i - 
1 I I 

it ’ ’ -t 
t; T  

(cl 

C:=Af, 

CT = A; 

t 
I 

X,(t) 
I 
I 

I 

A, (1) 
, 
I 
, 

U=U* I 
I 

41 I 
T 

-t 

lb) 

I I 
I ’ -t 
1’; T 

(d) 

FIG. 5. Adjoint variables near end of study period for four different cl/c2 ratios. 
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In order for the h’s to reach their required terminal values, the control variable must 
switch to u = 0 at the time t, defined by the solution of (38). 

Figure 5(b) is the case where the optimal solution stays on the turnpike right up 
to final time T. This occurs when 

cl*/(cl* + c2*> = u* 

and not for cr = ca as might be intuitively assumed. 

Figure 5(c) is the case where the objective coefficients ci’ and ca’ are equal and, as 
in Fig. 5(d), since 

qc; + c;, > u*, 

the optimal control is u = 1 from the switching time t, to final time T. Again the value 

of tr is determined by (38). 
The optimal path approaching the turnpike is determined simply by the relative 

values of y,, and y  * where y0 is the initial value of the difference of state values 

yo = x,(O) - 40) 

and y* is this difference for states on the turnpike (see (30)). I f  y. is less than y* 

then the path to the turnpike is defined by u = 0 and ify, is greater thany* then u = I. 
For u = 0, the state variable xi does not change and x2 increases so the path in the 

x1x2 plane is parallel to the x2 axis (see Fig. 4). The length of time for u = 0 can be 
determined by solving the differential equation (7) for x2 using the given initial con- 
dition and the terminal condition that 

dto) - x&o) = Y*, 

or, equivalently, since xl(t) = Xi(O), 

xz(to) = x,(O) - Y*- 

The solution for the time to the turnpike, to , is 

e --n2to = (4 + ~,Y*m, + %Yo) = .MY*MYo). 

Also, during this initial period when u = 0, the solution for the adjoint variable 
h,(t) is 

Al(t) = (cl + cJ[l - (1 - u*) enz(*-@] 

for t in the interval [0, to]. 

480/10/1-2 
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For u = 1, x2 does not change but X, increases so the path is parallel to the xi axis 
(see Fig. 4). The time t,,’ of this initial period is given by 

e+o = PI - w*)l(b - a,~,) = .fd~*)/fi(~~). 

The adjoint variable is given by 

A,(t) = (cl + cJ z4*ealttwtd), (41) 

for t in the interval [0, to’]. Figure 6 shows the adjoint variables for the two particular 
initial state vectors shown in Fig. 4 for parameter values as used in Figs. 3-5. 

It is possible that the optimal solution may not use the turnpike at all. This would 
be the case especially for small values of total learning time T. To determine if this is 

1 
I o--o U=“* 
4 
I L 
to t 

(a) 

yI;)h x,(t) 

T I 
to t 

(b) 

FIG. 6. Adjoint variables near beginning of study period for two different initial points. 
Case (a) yO > y* and Case (b) yO < y*. 
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indeed the optimal solution, the objective value must be calculated for each of the four 
possibilities of the control sequence, i.e., all zero, all one, zero then one and one 

then zero. There will be no more than one switch point for these solutions as shown 
by the previous analysis of the dynamics of the h’s and the quantity e which determine 
optimal u’s. 

Maximal Average Learning Rate Solution 

Instead of using the optimal control approach to this problem, suppose we think 
of the problem as follows: If  the optimal solution includes a path in the xrxa plane 
such that y  = x1 - xa is constant along the path, then that path should be the solution 

of the problem 

maximize g(y) = &(3i*r + ia) (42) 

subject to x1 - xa = y  = constant. As justification for this conjecture, consider a 
comparison path that does not follow this maximal average learning rate path. Thus for 
all values of final time T larger than some particular value, say T’, the time saved by 
following the turnpike would more than compensate for the time it would take to get 
to the turnpike from this comparison path plus the time to return to the comparison 
path. 

The solution of (42) is straightforward. From (7) we have 

‘c(Y) = HKMY> + (1 - U)fXY)l* 

But to satisfy the constraint of (42) we have 

which implies that 

u = fdYw-l(Y) + fi(Y)l. 

Thus the function g(y) becomes 

‘r(Y) = fl(Y>.f2(Y)/K(Y> + fi(Y)l, 

wheref, andf, are positive in the region of interest for this problem. 
For y* to maximize (44), it is necessary that 

i.e., 

g’(Y*) = 0 

fi”(Y*)fi’(Y*> + fl’(Y*)h”(Y*) = 0 

(43) 

(W 
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or 

[fi(Y*M2(Y*>l” + vi’(Y*>ifi’(Y*>I = 0. (45) 

For the problem in question fr and f2 are linear varieties and are given by (10). Thus 

(45) b ecomes 

Wl - %Y”W, + %Y*P - w4 = 0 (46) 

i.e., 

(bl - %Y*m, + %Y*) = fl(Y*MY*> = *(4%)i9 

where the positive sign must be chosen since fr and fa must be positive. Now (43) 
shows that 

24 = u* = &&/a,+ z/G), (47) 

which is the same result as before (see (31)). Equations 46 and 47 can be combined to 
show that the value ofy* is the same as the one derived in (30). 

SOLUTION OF DISCRETE MODEL 

Deterministic Model 

The complete solution of the simplified continuous model was developed in the 

previous section. The optimal solution was such that the control variable u(t) was a 
piecewise constant function with at most three values and two points of discontinuity. 
For example, as shown in Fig. 4 for a particular initial point and particular objective 
function weighting constants cr and ca , the optimal solution is 

I 0 < t < t, , u(t) = u* t, < t < t, , (48) 
0 t, < t G T, 

where U* is the value of u(t) to keep the trajectory on the turnpike. 
The discrete model (15)-( 17) was shown to be equivalent to the continuous model. 

Thus the optimal solution for the discrete model is also given by (48). However, in the 
,discrete model, the control cannot change value within the interval so that if the optimal 
switching time t,, or tl does not occur at the end of the discretized interval of the discrete 
model, then the controls cannot be made identical. One way to alleviate this difficulty 
is to make the discretized interval very small so that the error involved can be ignored. 
An exact equivalence can be made, however, if the interval containing switching is 
divided into two intervals at the switching point. The discrete model was set up with 
equal intervals but there is no mathematical difficulty in making intervals unequal. For 
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the two short intervals, separate calculations of the matrices 4(k) and B(k) would have 
to be made. For all the other intervals where u(K) does not change, the matrices 4(k) 
and B(k) do not change so a one-time calculation is sufficient. 

The matrices 4(/z) and B(k) will be required for the next section. Equations 15 and 
16 may be solved explicitly for a given u(K) by expressing the F matrix in modal form, 

i.e., 

F = UlYV, 

where U is the modal matrix of eigenvectors of F and r is the diagonal matrix of 
eigenvalues of F. To simplify the notation we make the definitions 

a,’ = v(k), 

a2’ = 4 - WI, 
(49) 

so that (12) becomes 

F = -a1' L ""I. a2’ -a2’ 

The eigenvalues of F are -(a,’ + a,‘) and zero. Now, with some manipulation, 

(15) and (16) yield 

4(k) = exp(-a,’ - a,‘)Wk) + N(k), (50) 

\ 1 - exp(-a,’ - a,‘) 
B(k) = ( 

(al’ + 4’) 
M(k) + N(k); G(k), 

where 

M(k) = ’ [ “l: -t:], 
a,’ + a,’ -a2 

N(k) = 

For intervals where u(k) = 0, then a,’ = 0 and a2’ = aa so that 

and 

(51) 

(52) 
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shows that 

as required for u(R) = 0 and 

.~(h + 1) = e+%(h) + [x,(h) + (4hJ(l - e-‘“). 

Stochastic Model 

In this section we will examine the discrete model with the random components 
included as originally posed in (3)-(6) except that the learning rate characteristics will 
still be approximated by the linearized version (Eq. 10 and Fig. 2). An optimal control 
policy for this problem would be very difficult to determine although, presumably, a 
computational procedure would find such a solution for a particular problem. How- 
ever, with the optimal solution for the deterministic problem at hand, we can formulate 
a suboptimal control policy that approximates our previous solution. 

The source of the difficulty at this point is the introduction of the random com- 
ponents. The randomness in the state Eq. 5 reflects uncertainty about how the student’s 
achievement level changes from day to day even though the instructional input is 
known. The randomness in Eq. (6) reflects uncertainty about the state of the student 
even though a measurement (e.g., administering a test) has just been taken. Our solu- 
tion for this problem is to calculate an estimate of the state vector at the end of each day 
and use this estimate to determine the instructional (control) input for the next day. 
The estimation procedure will make use of the Kalman filtering technique (Kalman, 
1960) which yields the minimum variance estimate of the state taking into account 
all previous measurements, the history of control inputs and the dynamics of the 
system. 

The state estimator and system controller configuration is shown in Fig. 7. Using 
the initial state estimate, a(O), the controller chooses an instructional input for the first 
day, u(O). The achievement level of the student at the end of the first day is described 
by the state vector x(l) which is the input to the measurement system. By a test 
performance, a measurement z(1) of this state is made. The estimator takes this 
measurement and information from the controller about the instructional input and 
delivers a new estimate of the state of the student, a(l). The cycle now continues 
producing a multistage process. 

The system dynamics is described by (3) with the linearized learning rate charac- 
teristics of (10). That is, 

x(k + 1) = #+@) + B(h) + n(W, (54) 
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I 1 I 
SYSTEM DYNAMICS x(ktl) SYSTEM MEASUREMENTS 

Described by state * Described by measurement 
equation equation 

I I 

u tkl 

I 

z(k+l) 

CONTROLLER 
;(ktl) 

ESTt MATOR 

FIG. 7. Block diagram of system with estimator and controller. 

where 

c+(k) is given by (50), 

B(k) is given by (51), 

n(K) is two component gaussion white noise vector with zero mean and 
covariance matrix E[n(K) n’(Z)] = SS,, , where a,,., is the Kronecker 
delta. 

The measurement system is described by (4) w h ere the measurement noise w(k) is 
independent of n(k), zero mean and with covariance matrix E[w(k) w’(Z)] = R6,, . 

,The estimator is described by the multistage linear filter equations (Bryson and 

Ho,ll969), 

qk + I) = x(k + 1) + P(k + 1) R-l[z(K + 1) - x(k + I)], (55) 

P(k t 1) = W + 1) - Q(k + l)[Q(k i 1) + W’$?(k + 11, (56) 

where 

x(k + 1) = W+(k) + B(k), 

Q(k + 1) = +(k)f’(k)#@)T L S, 

x(k) is the best prediction of x(k) g iven measurements up to time k - I, 

P(k) is the covariance matrix of the estimate error i(k) - .x(k), 

O(k) is the covariance matrix of the error in the predictive estimate 
x(k) - x(k). 

(57) 

(58) 
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Equations 55-58 may be interpreted as follows: The best estimate of x(K + 1) after 
having the measurements z(K + 1) is the prior predictive estimate ~(li + l), 
plus a weighted correction due to the “new” information in the measurements 
z(k + 1) - z(K + 1). Th e covariance of the new estimate P(k + 1) decreases from 
the variance of the predictive estimate Q(k + 1) by an amount dependent on the 
covariance of the measurement noise R. The predictive estimate $(K + 1) is the 
previous estimate modified by the system dynamics with its covariance being the 
modified previous estimate covariance plus the system noise covariance. 

The controller system proposed here is based on the optimal solution to the deter- 
ministic model as given in the previous section. Specifically, the best estimate of the 
current state of the student as calculated by the estimator is treated as if it were the true 
state and the corresponding optimal control for the next period is determined. 

The controller divides the x1x2 plane into three regions. The Turnpike Region 
contains the turnpike path (see Fig. 4); it is defined as that region in the x1x2 plane such 
that there exists an admissible control input that will transform the state to a point 
on the turnpike in one period (ignoring the noise component). Region Zero is below 
and to the right of the Turnpike Region, where Region One is above and to the left 
of the Turnpike Region. See Fig. 8. 

If the state estimate is in Region Zero the controller assigns a control input of zero 
and hence the path of the system in the x1x2 plane is parallel to the x2 axis, toward the 
turnpike. If the state estimate is in Region One the controller assigns a control input 
of one, thus driving the system toward the turnpike as fast as possible. In the Turnpike 
Region, the controller calculates what value of control input will drive the system to the 
turnpike and assigns this value as the input for the next period. 

FIG. 8. Regions in x1.x2 plane defined by controller. 
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In order to determine the region boundaries and calculate the value of control for the 

Turnpike Region, the following problem must be solved: given the state x(k) at time k, 
what value of u(k) will put x(/z + 1) on the turnpike path (in expected value sense) and 
is this u(k) admissible (i.e., between zero and one)? If x(R + 1) is on the turnpike, 
then 

Now from (17), 

x,(k + I) - xz(k + I) = y*. (59) 

+,x,(k) - A&(k) + W) - W) 

and substituting from (50), (51) and denoting x,(k) - x,(k) by y(k) 

y(k + 1) = y(k) exp(--a,’ - a,‘) + [(b, + b,) u(k) - b2] ‘““(~“~‘,~~“~‘~ - I . (60) 
1 2 

Since the a,“~ involve u(k), this equation cannot be solved explicitly for u(k) as a func- 
tion ofy(k). F or s ecr c p ‘fi p arameter values the relationship between u(k) and y(k) could 
be determined numerically. However, if the exponentials in (60) are approximated by 
linear terms only and the ui’ variables are expressed in terms of the original ui variables, 
then 

y(k + 1) = y(k)[l + (~2 - a,)+) - 4 + (b, + O@) - b, . 

Now (59) requires that 

u(k) = fdY@N Y* - Y(k) 
fl(YW + fdYW) + fl(YW) +fi(Yw)’ 

(61) 

wherefdY(k)) andfdY@N are defined earlier in (10). Notice that the first term of (61) 
is the value of control that would maintain the system at the current “distance” from 
the turnpike since with this control y(k + 1) = y(k). The second term adjusts the 
control input upward or downward depending on the sign ofy* - y(k), i.e., depending 
on whether the current state is above or below the turnpike. If  (61) gives a value of 

u(k) less than zero or greater than one, then the turnpike cannot be reached by an 
admissible control and u(k) < 0 corresponds to Region Zero and u(k) > 1 corresponds 
to Region One. 

The control near the final time T is either zero or one depending on the relative 
values of cr and ca as shown in Fig. 5. The time of switching from control by (61) to 
terminal control is given by the solution of (21), (34) and (40). 
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COMMENTS AND CONCLUSIONS 

All of the results presented are for the case with the learning rate characteristics in 

linearized form. By the nature of the nonlinear characteristics it is intuitively clear that 
the optimal solution for the nonlinear case has the same “turnpike” form. Therefore, 
once the location of the turnpike path has been calculated, which is defined for the 
nonlinear case by (45), then the solution for this case is straightforward. If  the initial 
estimate of the state is far removed from the Turnpike Region, then the estimation for 

the initial stages could use parameters derived from a local linearization of the non- 
linear characteristics in order to improve the estimator accuracy. Once the state 
estimate is “close” to the Turnpike Region, the parameters need not be updated 
throughout the remainder of the study period. 

An extension of the results presented here to a learning environment with three or 
more curriculum strands should be straightforward. Although the results could not be 
viewed as simply as was possible in the present case (i.e., with a scalar difference 

variable y(K) and two dimensional state space graphs) the concepts of the solution 
would transfer to the multistrand case. The turnpike path would be identified 
by finding a maximal growth path such that for some control policy the amount 
learned in each strand would be the same each day. In the multistrand case the linear 
filter estimator would make use of a linearized learning model about the turnpike path. 

In the previous section the controller-estimator system made use of measurements 
after each learning session. The common measurement method of testing is costly in 
the sense of student time as well as instructor preparation and evaluation time. For this 
reason it may be advantageous to reduce the amount of testing by taking measurements 
only every other day or even less frequently. This possibility can be immediately 
implemented with the proposed system. The estimator described previously will 
provide minimum variance estimates even without new measurements but, of course, 

the variance of the estimate error will increase without new information. One attractive 
possibility would be to take frequent measurements during the initial stages until the 
state trajectory was near the turnpike path and the estimate error variance was small. 
Then the system could proceed with only occasional measurements as long as the error 
variance remained small. I f  a later measurement was farther from the predicted value 
than some predetermined threshold, more frequent measuring could be resumed. 
In learning environments where testing is extremely costly or impractical, then, an 
open loop control policy could be defined for the entire study period based only on the 
initial estimate of the state of the student. 

This paper has presented an analytic solution to an optimization problem in the 
theory of multistrand learning. The form of this solution was used to define a sub- 
optimal controller for a more realistic learning model that included random com- 
ponents. The proposed controller was of a closed-loop design that made use of a 
separate estimator system based on linear filtering theory. 
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